

Building a Parallel Cloud Storage System using OpenStack’s Swift Object Store
and Transformative Parallel I/O

Introduction/abstract and objective
 In this project we built a prototype of a parallel cloud storage
system. We started by determining the scaling capability of Swift's
object storage system coupled with the parallel I/O feature from Los
Alamos National Laboratories (LANL) Parallel Log-based File System
(PLFS).
 PLFS is used to parallelize and write data in an N-1-N fashion. We
wanted to see if and how PLFS would be incorporated in a cloud
environment.
 Swift is an open source cloud storage application used for creating
redundant, scalable object storage using clusters of standardized
servers. Swift can store petabytes of accessible data, and it serves as
a long-term storage system for more permanent, static data. The
data can be retrieved, leveraged, and then updated if necessary.
 S3QL is an active Python/FUSE-based file system that runs with
Amazon's "Simple Storage Service (S3)". S3 can be transposed into a
full-featured UNIX file system which is usable by PLFS. This then
serves as the file system interface between LANL’s PLFS and
OpenStack’s Swift object store.
 We installed PLFS on top of Swift, and S3QL. After successfully
integrating the PLFS transformative parallel I/O feature with our
S3QL file systems, we conducted various studies. Typically, we
focused on the I/O bandwidth and system performance.

Testbed and what tests we ran
 The head node was only used as a gateway, and was not involved
in any testing. Our compute nodes each had 8 core CPUs and 12GB of
RAM. We netbooted all of our compute nodes via Warewulf, with
Swift, S3QL, and FUSE instances installed.

Baseline Performance Testing –-
 Baseline tests began by simply writing to one S3QL mount on a
single node using “dd”. It wrote 1GB to 4GB test files to S3QL mount
with each iteration using a unique block size and count. In terms of
speed, we found the optimal block size to be 512KB. As expected,
the read tests were much faster.
 The second tests involved writing in parallel to 3 local S3QL
mounts; again, 512KB was the optimal block size. In this instance,
the “dd” command was used again.
 Finally the third baseline test did implement PLFS with double
FUSE layers. Having FUSE proves to affect our performance later on.
Target Performance Testing –-
 The main goal of our testing was to get to doing writes to many
cloud storage objects in parallel. During our target testing we
achieved this goal through N-N MPI runs, and PLFS N-1-N write
implementation.
 We tested the parallel performance of one node, and up to 5
nodes by striping the writes. Each of our nodes had 8 core CPUs so
our max performance tests ran 40 processes in parallel to get the
best aggregate performance.

Future Work
 Our current project only focused on writing compressed data to our cloud.
There are many interesting things that might be discovered if we tested with
different uncompressed data configurations. We would like to examine how the
CPU temperature, power consumption, and input bandwidth is affected when
writing cached and/or uncompressed data versus the default LZMA compressed
data.

 As mentioned above in the target testing section, when implementing PLFS,
we saw many mount instabilities arise both in our NFS mounts and our S3QL
mounts to the Swift cloud server. Future research needs to be done to see if it is
possible to improve Swift’s stability as it interacts with PLFS by modifying
parameters that would allow for scaled, concurrent writes to cloud storage.

 Our project only focused on using an S3QL file system, but there are a couple
of other viable options that could be tested with Swift’s cloud technology.
GlusterFS and Ceph are two different file systems that might offer better
performance or stability. It would require some testing to determine which type
of file system software offers the best performance when interacting with cloud
technology.

Kaleb Lora, Univeristy of Washington Seattle Andrew “AJ” Burns, New Mexico Institute of Mining and Technology

 Martel Shorter, Prairie View A&M Esteban Martinez, University of New Mexico

Proxy Node

Auth Node

Typical Swift Object
Store Set Up

Software Architecture for the proposed Parallel
Cloud (Archive) Storage System

Baseline Performance Tests

(right) Our first test was
done to a single S3QL
mount point to determine
the best block size. From
the graph, we determined
512kB was the best block
size to use.

(left) Out of the same
test we took read data as
well. It isn’t overall that
interesting due to
caching.

(right) For our next test,
we parallelized the writing
across 3 S3QL mount
points. We got an
aggregate speed 3 times
higher than a single mount.
This shows good single
node scaling capabilities.

(left) The last baseline
test we did involved
mounting PLFS through
an extra fuse layer.
Through this, we found
FUSE to be a big limiter
in our performance.

(right) Immediate
performance
improvement with
adding nodes even with a
small number of
processors per node.

(left) Also noticed spikes of
increased performance at
each number of processes
that was a multiple of the
number of hosts we were
using.

(left) Parallel cloud storage is
possible and has good scalability in
the N-N case. Performance scaled
linearly as nodes were added to
our cluster.

(right) PLFS performance results
were similar to N-N performance
results, but added enough
instability to the S3QL mounts
that many failures prevented a
complete set of tests.

Target Performance Tests

Mentors: HB Chen, HPC-5 Benjamin McCleland, HPC-5 Parks Fields, HPC-5 David Sherrill, HPC-5 Alfred Torrez, HPC-1 Adam Manzanares, HPC-5 Pamela Smith, HPC-3

Instructor: Dane Gardner

Conclusion
 As High Performance Computing moves into the exascale
levels, archiving petabytes of data will become a real issue. It
is not a viable solution just to buy more tape and hard drives
for storage; it simply isn’t feasible. Cloud technology is
primarily used for reading files, not writing them. Since
archiving is about 90% writing files, we needed to determine
whether cloud technology could get the performance needed
for efficiently writing data. Our research was focused on using
cloud storage as a replacement for the traditional methods of
archiving data.

 The results were what we hoped for: Cloud Storage is a viable
archive solution due to its linear scalability as you add hosts to
the cloud. Even with the local writes, you get good scalability
as you parallelize your writes to the cloud storage file systems.
Container management for larger parallel archives eases the
migration workloads. Many cloud storage software tools can be
utilized for local archives, and with parallelization techniques,
bandwidth of archive writes can be dramatically improved.

N-N N-1-N

Data Writing Methods

LA-UR-12-23630

